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On Tests for Uniformity: Neyman's Statistic and

Statistics Based on Gaps and Stretches
By

Herbert Solomon and Michael A. Stephens

Introduction.

In this paper we provide percentage points for Neyman's goodness-of-
fit statistics of order two for the uniform distribution. Recent work has
suggested that this statistic is powerful against a wide range of alterna-
tives. The statistic is a combination of the sample mean and sample
variance of the observations. The percentage points have been found by
fitting Pearson curves, following the work of F. N. David (1939) who gave
the first four moments of the Neyman statistic. We then turn our attention
to another situation concerned with sampling from a uniform distribution.
Deken (1980) has produced exact distributions and moments for the largest
gaps (spacings) and stretches (higher order spacings) among points uniformly
distributed on a unit interval. An approximation to the distribution is
also suggested by Deken. We develop the Pearson curve fit for the distri-
bution of this maximum statistic and find it is excellent over the range of
values and somewhat better than the approximation in the lower tail region.
The test statistic developed by Deken is powerful against alternatives to
the uniform distribution that are likely to produce several clusters among
the n points along the line. DNeken suggests multiple comparison testing
as a motivation., Another possibility occurs for some physical phenomena,
e.g. Poisson processes, where events are registered on a line and the issue at

hand is usually whether there is uniformity which would represent one explana-

tion, or clusters of the n points which would depict another model.




Neyman's Statistic N%.

Neyman (1937) suggested that any density f(x) on the interval (0,1)

can be written in the form

k
(1) f(x) =cexp{l + ] 8.2 (x)}), 0<x<1, k=1,2,...
jap 33

where ll(x), lz(x),... are Legendre polynomials, 6 92,...,6 are

1’ k
parameters, and c, a function of 61,62,...,6k, is a normalizing constant.

When Gj =0, for all j§ > 1, f(x) is the uniform density f(x) =1

written U(0,1). The Legendre polynomials are orthogonal on the interval

(0,1), and, by varying k, f(x) may be made to approximate any given {

alternative. As the 0, increase, the density f(x) varies smoothly

3

from the uniform distribution; thus the test for uniformity can be put

in the form of a test on the parameter values, i.e. a test of

LI

H_: )
=1 3

o =0.

By likelihood ratio methods, Neyman found an appropriate statistic for
testing Ho. Suppose XpsXgpeoosX is the given random sample. For given

k the test statistic 1is N2 calculated as follows:

k’

(a) Calculate

S I :
- = 1,..., H i
(€) VS Va 121 £y(x) 5 4 k
(b) Then |
k B
2 2
(3) N

Vv, .
g1 3




In these calculations, &£,(x) is best expressed in terms of y = x-0.5.

]
For the first four polynomials

Bl(x) = 2/3y; Zz(x) = /5(6y2—0.5);

2,00 = /1(20y°-3y); 8, (x) = 3(70y*-15y%40.375) .

In general, H_ , will be rejected for large values of Ni. Note that

0
Nl is equivalent to X, the mean of the Xy In fact Ni = vi and
v, = (12n)1/265-0.5). Then let t, be the upper tail percentage

point for Ni

and lower tail percentage point at level a for x; we have ZQU = l-zaL’

and thy = 12n(ZaU--0.5)2 = 12n(0.5'-ZaL)2. Thus significance points

at significnce level a, and let 2Z yA be the upper

aU, “aL

for Ni can be found from significance points for X; a table of such

points is available for example, in Stephens (1966, Table 1). Further,

v, = Z(xi-O.S)zln = sz, a form of sample variance, and so Ng is a

2

combination of both X and s2. In this paper we concentrate on Ng.

Neyman showed that, on H the vj are asymptotically independent,

o!
and each is normally distributed with mean O and variance 1. Thus the

asymptotic null distribution of Ni is Xi; for the alternative family (1)

the asymptotic distribution is noncentral xi. David (1939) examined

2 2 2 2 2
the null distribution of Nl =V and Nz = vy + vy

calculating their moments and fitting Pearson curves, David showed that

for finite n, by

for n > 20, the xi approximations were very good for Ni, when

k = 1 or 2, The tests are consistent and asymptotically unbiased.




Since Neyman's early work many tests for uniformity have been

Ak

b developed, and the statistic has been somewhat overlooked. In that
era before computers the statistics also required much computation,
as was pointed out by David (1939). Recently, however, Locke and
Spurrier (1978) have made extensive Monte Carlo studies of various tests
f for uniformity and have shown that Ng

range of alternatives. We have also shown this to be so, in an

is effective against a wide

unpuboished Monte Carlo study with some alternatives the same as,

. and some different from those of Locke and Spurrier. The fact that
2

N

it will detect many types of non-uniformity, and these simple statistics

uses both sample mean and sample variance makes it plausible that

also have a natural appeal. It seems worthwhile therefore to give a |

0’ for small values ]

‘ of n. This is done in Table 1. The points are derived by fitting

set of upper tail percentage points for Ng, on H

Pearson curves to the first four moments given by David (1939). These

moments are as follows:

o= 2
32
Hy = 4 - 35,
35035n
M, = 146 + 123#6 _ 2203&63 . 1794698g .
§ 35035n 119119n




David used two moments, or three moments with a zero start to approximate

the distribution of Ng by Pearson curves of Type I for Ni and Type VI 3
for N% for n = 5, 10, 20, 30, 50, 100, and concluded that these approxima-

tions gave very good results. A table of percentage points was not given, how-

ever, (it would have been very tedious to calculate at the time) and the
present Table 1 might therefore be regarded as an extension of David's

work, making use of modern capabilities. The Pearson curve approxima-~

tions are based on the extensive tables of significance points produced

by Johnson, Nixon, Amos an Pearson (1963) and reproduced in Pearson and
Hartley (1972). David showed that the asymptotic x% approximation
will be accurate for quite small n, and Table 1 demonstrates this also.
The last row of percentage points is obtained from xg. Further |
comments on the Neyman tests are in Pearson (1938) and David (1939).
Barton (1953) considered a slightly different class of alternatives

given by

k

f(x) = §J 88, (x), 0<x<1, k=0,1,...
j=0 jj

with 60 equal to 1. A restriction must now be placed on the ei

to ensure that the density is always positive. The same statistics

Ni may again be uged to test for uniformity against this alternative.
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Upper tail percentage points for N2

TABLE 1

2

.

0.5 0.75 0.8 0.9 0.95 0.975 0.99 0.995
1.571 2.702 3.058 4.193 5.411 6.748 8.741 10.454
1.492 2.685 3.069 4.292 5.594 6.998 9.041 10.749
1.459 2.689 3.086 4.352 5.688 7.109 9.143 10.810
1.442 2.696 3.102 4.393 5.745 7.172 9.190 10.827
1.432  2.704 3.116 4.422 5,784 7.212 9.215 10.826
1.425 2.710 3.126 4.445 5.812 7.239 9.227 10.815
1.420 2.716 3.135 4.462 5.833 7.257 9.231 10.798
1.416 2.721 3,143 4.476 5.849 7.272 9.235 10.787
1.413 2.725 3.149 4,487 5.862 7.283 9.235 10.773
1.409 2.731 3.159 4.505 5.883 7.300 9.237 10.755
1.406 2.736 3.166 4.517 5.897 7.311 9.235 10.735
1.403 2.740 3.172 4.527 5.908 7.319 9.233 10.720
1.402 2.744 3,177 4.536 5.918 7.327 9.235 10.716
1.400 2.746 3.181 4.542 5.925 7.332 9.234 10.706
1.398 2.751 3.188 4.554 5,937 7.341 9.230 10.684
1.396 2.755 3,193 4.562 5.947 7.348 9.23G 10.677
1.395 2.757 3.196 4.568 5.952 7.352 9.226 10.662
1.396  2.759 3.199 4,573 5.958 7.357 9.230 10.666
1.393 2.760 3.201 4,576 5.961 7.357 9.221 10.645
1.392  2.762 3.203 4,579 5.964 7.360 9.223 10.646
1.391  2.763 3.206 4.584 5.969 7.364 9.224 10.644
1.390 2.766 3.209 4.589 5.974 7.367 9.218 10.627
1.390 2.768 3.212 4,592 5.979 7.370 9.220 10.626
1.386 2.773  3.219 4.605 5.991 7.378 9.210 10.597
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Gaps and Stretches.

In an interesting paper,Deken (1980) has looked into the distribution
of gaps and stretches that arise in sampling from a uniform distribution
over the unit interval. For densities other than the uniform an
appropriate probability inverse transformation can be employed to
achieve a uniform distribution. Consider the order statistics Yys¥greros¥ys
in a sample of size n from the uniform distribution. Define the
as z

p-stretches ZysZgseecsZ .sntl-p. The

n+lp 37 Vgp1Vy I T e

variables zj are called spacings (p = 2), or higher order spacings
(p > 2). There is an extensive literature on spacings and in some
cases this literature deals with the classical geometrical probability

problems of random coverage of the circumference of a circle by random t

arcs. There 1is a duality between distributions related to spacings
and distributions of coverage. A recent article by Holst (1980), gives
some new results in this interesting subject as well as many references.

In some recent work on multiple comparisons, Welsh (1977), looks into
the variables zj and labels them gaps for p = 2 and stretches for
p > 2. Deken's key contribution i1s to deal directly with the lack of inde-
pendence between successive p-stretches. This is rather formidable for
P> 2 and had led in the past to asymptotic considerations. The multiple
comparison situation is one in which asymptotic results may not be suffi-
ciently accurate and in which the number of points n may often be small.

Deken demonstrates through a recursive formulation how to derive exact

results in many cases. Specifically, he computed the exact

distribution for the maximum p-stretch for all values of p for ten or
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fewer points uniformly distributed in the unit interval. 1In addition to

the exact distributions, he provides formulas for moments for n=2,3,...,10, 1
p=2,3,...,10 and quantiles of the distribution. He also produces an 3
approximation based on an independence assumption for the successive
p-stretches utilizing the fact that the distribution of any individual
p-stretch is Beta when sampling is from the uniform distribution, Therefore,
an approximation to the exact distributions computed by Deken is that of the
maximum of (n+l-p) independent Beta variable.
In Table 2 quantiles are listed for several cases where each cell
lists the exact value, the Pearson curve fit, and the approximation given
by the Beta assumption. For the column where the number of points is five
and the stretch is five and similarly, where the number of points is ten and
the stretch is ten, no approximatevalues are given because we are dealing { ]
directly with the distribution of the range. The Pearson curve fits do
extremely well over all cells, whereas the Beta approximation is only viable
for the upper tail.
From Deken's development, it appears that for n > 10, the analytical
development of moments is more feasible than producing the quantiles of
the exact distribution of the maximum p-stretches. Thus, should moments

become available for n > 10, the PC fit can be achieved rather econom. a1lly

and with the knowledge that the fit will be excellent.




TABLE 2

Percentage points for the maximum p-stretch in samples

of size n from the uniform distribution.
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